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Some Initial Results

First, we examine the continuous outcome variable – the change
in BPRS scores, reproduced here from (Kane et al., 1988) as Figure
1. Note how from baseline (at week 0) to week 1, the two group’s
change in BPRS scores quickly diverge, with clozapine appearing to
be more effective such that even after 1 week of treatment, the pa-
tients on clozapine show an improvement of approximately 5 points
over the chlorpromazine group. At 6 weeks, clozapine appears
markedly superior. However, a graph alone rarely convinces.

Figure 1: Graph from (Kane et al., 1988)
showing change in BPRS over the 6 weeks
of treatment. Broken and solid lines show
patients assigned to chlorpromazine and
clozapine respectively

In their paper, Kane et al. use analysis of covariance (ANCOVA) to
model their data. To understand this, along with the related analysis
of variance (ANOVA), it is often useful to frame the model in terms
of regression.

There is debate in the statistics literature
about whether ANOVA and ANCOVA
are really special cases of regression –
under the umbrella of linear models –
but it suffices to note that it is possible to
formulate both using regression models
(Van Breukelen, 2006)

A Primer on Regression

We begin with a refresher on linear regression. In straight-forward
linear regression, we specify that our dependent variable (or out-
come) y is related to an independent (predictor) variable x in a
linear (straight-line) relationship governed by the simple regression
equation (which we call a model):

y = β0 + β1x + ε (1)

It’s easier to understand each of the terms in the above equation
using a graphical example. In Figure 2, the coefficient β0 represents
the intercept of the blue line on the y axis and β1 is the gradient of
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the blue line. The final term, ε, is the error term that captures the
variation in the data that cannot be explained by x in the linear
model. This error term essentially captures the ‘spread’ of the data
around the blue regression line, and in most models we require
this to be random and normally distributed – that is, the pattern of
the data points around the blue line should not follow a systematic
pattern.
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Figure 2: A regression example. Black
dots are the data collected from e.g. an
experiment. The blue line is the regression
equation fitted to the data which exposes
the changes in y as x varies

Regression with Continuous Variables

To understand how the coefficient β1 in equation 1 is estimated,
examine Figure 2: if you start at x = 6, draw a vertical line up to
the blue line, and then horizontally across to the y axis, you arrive
at y = 6. Do the same at x = 9 and you arrive at y = 7.5. So, the
change on the x axis is ∆x = 3, and the corresponding change in the
y axis is ∆y = 1.5 resulting in a gradient β1 = 0.5. This results in We use the convention of ∆ to denote a

change in a variable and recall that the
gradient is defined as ∆y/∆x = 1.5/3.0 =
0.5

the regression model (ignoring the error term for now):

y = 3.0 + 0.5x (2)

The intuition is that, for a one-unit change in x, there is cor-
responding change of 0.5 units in y, in addition to the baseline
(intercept) of 3.0. It should be clear that once we have estimated
(fitted) the model given in equation 2 we can then predict a value
for y given any value of x, even though data for that specific value
of x was not collected in the original data set. For example, if we One caveat: while we can predict the

expected value of y for a value of x not
present in the original data set, we should
not use values of x that are outside of the
original range of the data – i.e. we should
not expect the regression to extrapolate

want the predicted value of y at x = 10.5 (for which there is no
corresponding data) we compute y as:

y = 3.0 + 0.5× 10.5

y = 8.25
(3)

Using statistics software to find the β coefficients produces a model
of the data that predicts the expected outcome (y) in terms of predic-
tor variables (x). Statistics software simply provides a convenient
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way of doing similar calculations when the model and data are
more complex, for example, when we add more terms (x1, x2, . . . )
and their corresponding coefficients (β1, β2, . . . ) when there are
more variables needed to explain the changes in y .

We refer to the coefficients β being esti-
mated for – or fitted to – the data given a
model such as equation 1. If the model is
wrong (i.e. that data do not conform to a
straight-line) then the estimated coefficients
will be meaningless

Regression with Categorical Variables

In the example shown in Figure 2, both x and y were continuous
variables. However, there are situations (classically, those analysed
using ANOVA) where x is categorical. For example, the data in Categorical variables are those that

can take on one of a limited number
of values that do not necessarily have
numerical meaning, such as sex, ethnicity,
or treatment group

(Kane et al., 1988) requires an x that can assume values represent-
ing treatment type (clozapine or chlorpromazine) and time points
(week 0, and week 6).

In this case, it is convention to represent the discrete levels of x as Assigning binary codes to discrete, categor-
ical variables is called dummy coding

0 or 1 e.g. the control and treatment groups respectively, which in
our case will be chlorpromazine or clozapine treatments. The val-
ues of x in equation 1 are now either 0 or 1 (rather than continuous
values). So, rather than estimating the gradient of a straight line, we
end up with the coefficients β representing changes in the means of
y as we switch the variable x between 0 and 1 (chlorpromazine vs
clozapine).

To expand on this method of coding categorical variables, we
will set up a tentative model for the data in (Kane et al., 1988) but
use more meaningful variable names instead of x1, x2 and so on: This section can be skipped if the termi-

nology is confusing; we won’t depend on
detailed understanding of equation 4 but
will need the variable names, e.g. D, T
and Y. The detail of how regression equa-
tions are formally equivalent to performing
either ANOVA or an ANCOVA – as used
in (Kane et al., 1988) – can be found in
(Van Breukelen, 2006)

Yijt = β0 + β1Dij + β2Tit + β3DijTit + εijt (4)

This somewhat confusing array of notation is easier to under-
stand if we look at some data. Table 1 shows a sample of 10 pa-
tients arranged in rows, with columns corresponding to the vari-
ables in equation 4 as follows:

• i refers to the patient, enumerated 1 . . . N, with N denoting the
total number of patients (i.e. the number of patients assigned to
chlorpromazine, plus the number assigned clozapine)

• j describes the treatment group, where for chlorpromazine, j = 0
and for clozapine, j = 1

• t describes the time point; at baseline, pre-treatment (numerical
week 0) t = 0 and post-treatment t = 1 (i.e. at the sixth week)

With reference to Figure 1, here we will only
concern ourselves with the first and last
time points shown in the graph rather than
all 5 intervening time points

• Yijt is the total BPRS score for patient i in group j at time t

• Dij describes the medication assignment correponding to data-
point Yijt – that is, for patient i in treatment group j at time t –
e.g. if patient i is in the chlorpromazine group, then Dij = 0 and
if in the clozapine group, Dij = 1

• for a given datapoint, Tit records whether the value of Yijt repre-
sents the BPRS score before treatment (week 0) as Tit = 0 or after
treatment (week 6) with Tit = 1
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• the term DijTit is the interaction between the drug treatment for
patient i and the time point t and is obtained by multiplying Dij

by Tit.

i (Patient) Yijt (BPRS) Dij (Drug) Tit (Time)
43 71 0 1

102 59 0 0

81 53 0 1

107 57 0 0

59 62 0 1

103 42 1 1

125 57 0 0

106 78 0 0

104 59 1 0

9 49 1 1

Table 1: Sample of 10 patients illustrating
the terms used in equation 4

For example, inspecting row 3; the patient is i = 81, assigned to
treatment with chlorpromazine (Dij = 0), who at time Tit = 1 (i.e.
post-treatment at week 6) had a BPRS of Yijt = 53. Similarly, the
sixth row describes patient 103 who post-treatment with clozapine
had a BPRS of 42. In contrast, row 2 describes patient 102, who
before treatment (Tit = 0) with chlorpromazine (Dij = 0) had a
baseline (pre-treatment, week 0) BPRS of 59.

Now, if we want to estimate the average (mean) BPRS scores for
all patients in the chlorpromazine group at baseline, we would select
all rows in Table 1 such that

• there is a zero in the column Tit (Time)

• and a zero in the column Dij (Drug)

• resulting in patients i = {102, 107, 125, 106} Notice that although patient 104 has a 0 in
the Time column, there is a 1 in the Drug
column and they are therefore excluded
from this calculation as they were assigned
to clozapine not chlorpromazine

Then, we compute the mean value of Yijt (BPRS) for just these rows
which is equivalent to calculating equation 4 with all patients i
where j = 0 and t = 0

Yi00 = β0 + β1Di0 + β2Ti0 + β3Di0Ti0 + εi00 (5)

Next we substitute in the corresponding values for the terms
Di0 = 0 and Ti0 = 0 in equation 5 we get:

Yi00 = β0 +��
��:0

β1Di0 +��
�*0

β2Ti0 +���
��:0

β3Di0Ti0 + εi00 (6)

Which leaves

Remember that for any product of a number
of variables e.g. a× b, if any is zero, then
the whole term ‘cancels’ out : shown by

���:
0

a× b . Similarly, for a× b, if a = 1 the
term reduces to 1× b = b and conversely,
for b = 1, a× 1 = aYi00 = β0 + εi00 (7)

Which will be useful to us later because it tells us that the coef-
ficient β0 computed by our statistics package is really the baseline
level of BPRS scores for patients randomised to chlorpromazine.
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Similarly, if we want to estimate the baseline BPRS score for
those patients treated with clozapine; this corresponds to Di1 = 1
and Ti0 = 0 and equation 4 then becomes

Yi10 = β0 + β1Di1 + β2Ti0 + β3Di1Ti0 + εi10

Yi10 = β0 + β1 × 1 +��
�*0

β2Ti0 +���
��:0

β3Di1Ti0 + εi10

Yi10 = β0 + β1 + εi11

(8)

So Yi10 – the mean BPRS value at baseline of all patients assigned
clozapine – corresponds to the sum of the mean baseline BPRS
scores for patients assigned to chlorpromazine (β0, equation 7)
plus any additional contributions from those patients assigned to
clozapine (β1) . Thinking about this carefully, if the design of the That is, if the patients were truly ran-

domised then the BPRS scores at baseline
for patients assigned to clozapine should
be no more (or less) than those assigned
chlorpromazine

experiment was robust then β0 + β1 should be roughly equal to β0

Questions and Exercises

1. We calculated how the linear model looks for:

(a) The chlorpromazine group at baseline: Di0 = 0 and Ti0 = 0

(b) The clozapine group at baseline: Di1 = 1 and Ti0 = 0

Perform the same calculations for:

(a) The chlorpromazine group at the end of treatment: Di0 = 0
and Ti1 = 1

(b) The clozapine group at the end of treatment: Di1 = 1 and
Ti1 = 1

2. Practical problem: We’ve seen how the linear model described
in equation 4 yields values for the mean BPRS in different treat-
ment groups at different times. Try to ‘manually’ compute the
corresponding values for chlorpromazine and clozapine at base-
line.

(a) Load Kane-simulated.csv into your preferred statistics pack-
age – it should look like Table 1 only more systematically
ordered by Drug and Time.

(b) Select rows where Drug = 0, and Time = 0 (chlorpromazine,
and baseline)

(c) With only these rows selected, compute the mean of the
BPRS column

(d) Repeat this, but where Drug = 1, and Time = 0.
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