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Introduction

Unfortunately, we can’t work with the original data from (Kane
et al., 1988) because we can’t access the patient-level data. However,

Nowadays, it’s expected that published
trials make participant-level data available
so we can check the analyses used and
conclusionsusing the figures and tables in Kane et al., we produced some simu-

lated patient-level data for 265 patients. We saw this simulated data You should consult (Kane et al., 1988) to
see why the actual number included in the
analysis differs from the original number
recruited and randomised

as Kane-simulated.csv in Part Two. Figure 1 shows Kane’s results
and our corresponding simulated data after treatment (note that we
only simulated the total changes at the end of six weeks).

Figure 1: Results from (Kane et al., 1988)
(left column) with corresponding simulated
data (right column): A – Change in Mean
BPRS, B – Change in Mean of the 4-item
cluster BPRS score and C – Change in
Mean CGI

In the simulated and real data there are changes in both groups
evidenced by the week 6 outcomes being markedly different be-
tween clozapine and chlorpromazine groups. The Kane et al.
graphs show relatively narrow error bars, and similarly, in our
simulated data we show the BPRS change (using boxplots) and de-
scribe the spread of the data with ‘whiskers’ indicating the median
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plus/minus 1.5 times the interquartile range.
Now, we’ll concentrate on the ways this data could be analysed

emphasising different methods but without advocating for one or
another. Any method of analysis needs to be justified depending on
what hypotheses we need to test, the design of a study, suspected
bias and the need to adjust for confounding factors in the study.
At the very least, we will be able to show how (Kane et al., 1988)
performed their analysis. Throughout, we will formulate analyses
using the linear models described by equation 1 below.

Analysis by Repeated Measures ANOVA

Recall the equation for the linear model introduced in Part Two: Throughout, we have ignored the details of
the error term εijt which captures variation
in Yijt that is not explained by the other
terms in the linear model. To properly
model these error terms, we would need
a hierarchical model which is beyond the
scope of this introduction – see (Gelman
and Hill, 2007).

Yijt = β0 + β1Dij + β2Tit + β3DijTit + εijt (1)

Where the variables are:

• Yijt: BPRS score (for patient i, in treatment group j at time t)

• Dij = 0: chlorpromazine group

• Dij = 1: clozapine group

• Tit = 0: before treatment

• Tit = 1: after treatment

• DijTit: interaction between drug and the time

The formulation in equation 1 is a repeated measures ANOVA, it is
a linear model, and we have framed it as a regression with discrete
predictor variables for time, T, and drug treatment, D. This model
lets us see if there is an effect of drug and time on the means of the
BPRS values. To make this precise and concrete, examine Table 1

which describes each combination of time and drug and we have
filled the cells with the corresponding means of BPRS values (the
exercises in Part Two were to compute just these values).

Drug
0 1

Time
0 µ00 = 62.23 µ01 = 64.13
1 µ10 = 57.20 µ11 = 48.20

Table 1: Mean BPRS scores for each
combination of time and drug

We denote the mean of Yijt (the BPRS value) as µtj for specific
subsets of the data with j being the drug and t being the time. For
example, if we want the mean BPRS for the drug chlorpromazine
(Di0 = 0) at baseline (Ti0 = 0) we collect together all rows of our
data and compute their mean value of y and this would be labelled
µ00 corresponding to the top-left cell in Table 1. Similarly, if we
wanted the mean BPRS for the clozapine-treated patients at the end
of the study, we would select all rows of our data where Di1 = 1
and Ti1 = 1 and label it µ11, located at the bottom-right of Table 1.
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After computing the means for each cell in Table 1, after treat-
ment, there seems to be a difference in the BPRS scores for pa-
tients treated with clozapine (µ11 = 48.20) versus chlorpromazine
(µ10 = 57.20). There are now two questions that need answering:

1. Is the difference in BPRS scores between the two treatments
clinically different ?

2. Assuming this is true, is the difference in BPRS scores attributable
to chance (a ‘fluke’) or is the result likely to be reproducible –
that is, are the results statistically significant ?

We know that the first question is addressed in Kane et al. using
their inclusion criteria and their outcome is more sophisticated than
simply change in the total BPRS score but as we are interested in
understanding methods, we’ll focus on statistical significance.

We’ll use a statistics package to estimate the linear model in
equation 1. The results we get are shown in Table 2. Let’s revisit the
terminology:

• the column Term in Table 2 refers to the variables in equation 1.
So, for example, Drug is equivalent to Dij and Time refers to Tit.

• when we set the variable Dij = 0 or 1, we are examining chlor-
promazine or clozapine respectively. Time behaves similarly with
Tij = 0 referring to pre-treatment, baseline or week 0 and Tij = 1
refers to post-treatment, or week 6

• the term Drug:Time really means the interaction Dij × Tit which
describes how the BPRS scores differ when Time changes (from
pre- to post-treatment) along with Drug (between chlorpro-
mazine to clozapine treatments); we are looking at the effect of
changes in time with respect to the two different drugs Different statistics packages will use differ-

ent ways of formatting tabular output, as
well as representing things like interaction
terms

• the column Beta in Table 2 are values estimated by the statistics
package, and correspond to the coefficients β in equation 1. So,
to find β2 – the coefficient of the time variable Tit – we simply
read off the term Time

• perhaps less obvious is the beta for (Intercept) which is equiva-
lent to β0 in equation 1

Fitted Model (Equation 1)
Estimated Beta 95% Conf. Int.

(Intercept) 62.23∗ [60.56; 63.90]
Drug 1.90 [−0.53; 4.32]
Time −5.03∗ [−7.39; −2.66]
Drug:Time −10.90∗ [−14.33; −7.47]
∗ p < 0.05

Table 2: Typical output from a statistics
package from estimating the repeated
measures ANOVA model

To make interpretation of the output of the statistics package
clearer, we re-tabulate Table 2 and insert the terms and coefficients
from equation 1 alongside resulting in Table 3:
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Output Term in Eqn. 1 Coefficient Estimated Beta 95% Conf. Int.
(Intercept) – β0 62.23∗ [60.56; 63.90]
Drug Dij β1 1.90 [−0.53; 4.32]
Time Tit β2 −5.03∗ [−7.39; −2.66]
Drug:Time DijTit β3 −10.90∗ [−14.33; −7.47]
∗ p < 0.05

Table 3: Correspondence of outputs from
a statistics package with linear model in
equation 1Interpreting Table 3, we note that the (Intercept) is 62.23 and the

95% confidence interval tells us this value could be as low as 60.56

or as high as 63.90. Also, note that this term’s coefficient (β0) is
statistically significant at the p < 0.05 level A simple definition of confidence intervals:

if we repeat the Kane et al. study a large
number of times (say, R times), and for
each repetition we compute the linear
model on the new data sample, we’ll get
R new values for the model βs. In 95% of
these cases, the new βs will be between
the lower and upper confidence interval
reported, but in 5% of cases, they will not.

Next, notice how the top-left cell in our manually calculated ta-
ble of means (Table 1), µ00 = 62.23 is the same as the estimated
value for (Intercept), corresponding to β0 in equation 1 and Table
3. This is no coincidence, but a feature of the linear model. To sum-
marise: the mean BPRS score for chlorpromazine at baseline was
calculated to be µ00 and this is equivalent the estimated β0 in the
model described in equation 1.

We can now ask about the correspondence between the other
coefficients β when we set the variables Dij and Tit in equation
1 according to each of the cells in Table 1. Take the bottom-right
cell, µ10 which corresponds to the mean BPRS for chlorpromazine
Dij = 0 after treatment Tit = 1 – substituting in equation 1:

Yi01 = β0 + β1 × Di0 + β2 × Ti1 + β3 × Di0Ti1

Yi01 = β0 +���
�:0

β1 × 0 + β2 × 1 +���
���:0

β3 × 0 × 1

Yi01 = β0 + β2

(2)

Which tells us β0 + β2 should equal µ10 = 57.20. Substituting the
estimated values for β0 and β2 from Table 3:

β0 + β2 = 62.23 + (−5.03)

= 57.20
(3)

Repeating this procedure for all four combinations of Dij and
Tit, we see the correspondence of mean BPRS with estimated model
coefficients shown in table 4. The additional calculations – similarly
to equation 3 – are left as an exercise.

To summarise, we have seen how a linear model (equation 1) can
be implement a repeated-measures ANOVA, and how the estimates
obtained from a statistics package have a natural and intuitive
interpretation that corresponds with the mean outcome (BPRS)
computed ‘manually’ in Table 2. We should bear in mind that the
relationships in Table 4 are approximate which is to say, the values
obtained by adding the βs estimated by a statistics package will
not be identical to the µs in Table 2. This is because our model
(equation 1) assumes that each value of Yijt can be captured as a
linear function – i.e. a sum of terms. This assumption will vary
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between patients and perhaps medications and time points, so we
include an error term ε which captures additional variation. The
algorithm implemented in a statistics package then tries to find the
best estimate of each β given the model and it’s assumptions. So,
at the very least, you can check the assumptions of such models by
looking at the cell means (Table 1) and seeing if they are reasonably
close to the values given by the equivalences in Table 4.

Drug
0 1

Time
0 µ00 : β0 µ01 : β0 + β1

1 µ10 : β0 + β2 µ11 : β0 + β1 + β2 + β3

Table 4: Correspondence of mean BPRS
scores and βs

Questions and Exercises

1. Load Kane-simulated.csv into your preferred statistics package.
Reproduce the 2 × 2 table of means for each combination of Time
and Drug shown in Table 1 above (Hint: To compute the top-left
cell, µ00, you need to select all rows where the column Time = 0

and Drug = 0; then take the mean of the BPRS column for just
those selected rows. Repeat this for each cell selecting instead
rows which are selected by the different assignments of Time and
Drug according to Table 1)

2. Using Kane-simulated.csv, plot the mean and 95% confidence
interval on the mean – i.e. the graph showing the table of effects
you computed above. It should look similar to Figure 2.
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Figure 2: Plot of mean BPRS by Drug and
Time

3. Attempt to fit the model given in equation 1 and compare the
coefficients with the table derived above. Instructions are given
below.

To implement equation 1 in SPSS, we have to cheat a little - we
have to tell SPSS that Drug and Time are really numerical so that

SPSS refers to continuous numerical
variables as scale variables
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they are entered directly as numbers into SPSS’s algorithm for es-
timating the model. This ensures that the ‘cancel out’ mechanism
described above (equations 2 and 3) works. SPSS normally tries to
help users by working out which variables are nominal (categor-
ical), and then the graphical user interface for different analyses
helps further by using common terminology like ‘factors’ or ‘covari-
ates’. In fact, a factor or a covariate are really just terms (a variable
and it’s coefficient) on the right-hand side of equation 1. Given that
we’ve been working with the ‘raw’ equations for each linear model,
we don’t need this help – rather we just want SPSS to take terms
in our equations and estimate coefficients for them. For this rea-
son, we use the Mixed Models tool in SPSS. The reasoning behind
this was that by understanding the actual linear model, you can see
the ways in which the models are similar and the differences in as-
sumptions. Sometimes, statistics appears more complex because the
mechanics of the underlying linear model are not spelled out.

To proceed in SPSS, you can load Simulated-kane.sav which is
identical to Kane-simulated.csv only with the variables (columns)
already configured correctly for analysis in SPSS (to save you some
time)

Then, execute the following steps:

1. Select Analyze, Mixed Models then Linear

2. In the dialog box (’Linear Mixed Models: Specify Subjects and
Repeated’), add variable ’Patient’ to the Subjects list, and add
’Time’ to the Repeated list, and click ’Continue’

3. In the next dialog box (’Linear Mixed Models’), add ’BPRS’ as
the Dependent Variable, and add both ’Drug’ and ’Time’ to the
Covariate(s) list.

4. Click on the Fixed button, and then in the dialog, select both
’Drug’ and ’Time’ and hit Add so they appear in the Model list on
the right – notice how SPSS adds entries for ’Drug’, ’Time’ and
the interaction ’Drug*Time’. Click continue to return to the main
dialog box.

5. Now, click Statistics and tick the Parameter estimates boxes – click
continue.

6. Finally, back in ’Linear Mixed Models’ dialog, hit OK and the
model will be estimated

SPSS produces a lot of helpful diagnostic information, which we
will ignore because in this tutorial, we are interested only in under-
standing the results. Scroll down to the ’Estimates of Fixed Effects’ This is not to say this is unimportant, but for

this tutorial, we don’t have scope to explore
the details

table, and compare with Table 2
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