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Analysis using ANCOVA

We conclude by examining the analysis method used in (Kane et al.,
1988). An analysis of covariance – or ANCOVA – takes a slightly dif-
ferent approach to formulating the linear model and requires that
the data be organised differently. So far, our data has had one row
for each patient, at each time point (baseline and post-treatment).
To perform the ANCOVA, we need the data formatted differently,
and Kane-simulated-ANCOVA.csv contains the same simulated data
in a suitable format, a sample of which is reproduced in Table 1.

i (Patient) Yij (BPRS post-
treatment)

Xij (BPRS pre-
treatment)

Dij (Drug)

261 44 50 0

206 48 53 0

138 59 63 0

179 62 66 0

255 65 69 0

39 46 60 1

212 47 53 0

119 69 86 1

189 53 57 0

216 51 57 0

Table 1: Sample of data table arranged for
ANCOVA

The data is now organised as follows:

• i still refers to (indexes) the individual patients

• Yij is the BPRS score at week 6 (post-treatment, corresponding
to Tit = 1) – notice how we have also dropped the Time column
(Tit) because we know that all values in this column represent
only post-treatment BPRS scores. This corresponds to extracting
Yijt for each patient where Tit = 1 in the original table of data
(from Part Two)

• Dij as before, refers to the medication group assignment

• Xij is the BPRS score for patient i on medication j pre-treatment –
which can be obtained simply by extracting Yijt for each patient
where Tit = 0 in the original table of data (from Part Two)

With our data in this format, the formulation of an ANCOVA
(again, as a linear model) is:

Yij = β0 + β1Dij + β2Xij + εij (1)
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The important difference between our previous model Yijt = β0 +

β1Dij + β2Tit + β3DijTit + εijt and that described by equation 1 is
that we have the covariate Xij – the BPRS score before treatment. A covariate is a variable that may predict

the outcome and is treated similarly to any
other predictor variable. This is emphasised
by the fact that – like Time and Drug in our
previous example – it is just another term
in the sum on the right-hand side of the
equation for a linear model

The interpretation of the terms and βs in equation 1 are subtly
different:

• β0 is still an intercept

• β1 captures the effect of medication on post-treatment BPRS (Yij)
but is adjusted for the difference in group in pre-treatment BPRS
(Xij)

Importantly, β2 captures the effect of pre-treatment BPRS on the
post-treatment BPRS (Yij) and the way to understand it’s role is to
imagine the case where β2 = 1 in equation 1 such that This part can be skipped if the equivalence

of all of the linear models discussed is of
less interest

Yij = β0 + β1Dij + Xij + εij

Yij − Xij = β0 + β1Dij + εij
(2)

Notice that now, on the left-hand side, we have the difference be-
tween the post-treatment BPRS and the pre-treatment BPRS with a
right-hand side that simply models an intercept with an additional
contribution provided by the effect of drug treatment (and an er-
ror term, εij). So an ANCOVA turns out to be the same as a linear
model of a dependent variable – the change in BPRS (from pre- to
post-treatment) – with independent variables of an intercept and
effect of drug.

We prefer ANCOVA when we are sure the design is robustly
randomised, with no pre-treatment group difference because it
implicitly assumes that there is no difference between the chlorpro-
mazine and clozapine group’s BPRS scores before treatment, which
is a fair assumption given the randomised design implemented in
(Kane et al., 1988). If we find that patients assigned to each drug
pre-treatment did differ on baseline BPRS, then the ANCOVA ver-
sion of the model would fail to capture this effect and would result
in a biased model.

Interpreting the ANCOVA

After fitting the model in equation 1, our statistics package gives
the output shown in Table 2

Output Term Coefficient Estimated Beta 95% Conf. Int.
(Intercept) – β0 −4.65∗∗∗ [−5.95;−3.35]
Drug Dij β1 −10.89∗∗∗ [−11.30;−10.48]
BPRS (baseline) Xij β2 0.99∗∗∗ [0.97; 1.01]
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05

Table 2: Estimated ANCOVA model

We will not spend time methodically reporting these results,
because it follows the same approach as for the repeated measures
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ANOVA we discussed earlier. Of particular note, to test the effect
of medication on the post-treatment BPRS score (ultimately, this is
what we are interested in), we only have to inspect the Drug term
Dij and the corresponding coefficient β1. Again, we set up our null
hypothesis that there is no effect of drug and β1 is zero H0 : β1 = 0.
And we will make a decision to reject the null hypothesis H0 in
favour of H1 according to:

Reject H0 if β1 6= 0 with p < 0.05 (3)

Inspecting the ANCOVA results in Table 2 we find that the mean
post-treatment BPRS for clozapine (i.e. when Dij = 1) is −10.89
with a 95% confidence interval that tells us the effect could be as
much as −11.30 and as little as −10.48. The 95% confidence interval
does not include the null hypothesis (β1 = 0), and the p-value is
< 0.05. We therefore reject the null hypothesis of no effect of Drug
on BPRS.

We note that the estimated effect of drug is almost identical to
that obtained with the repeated measures ANOVA (from Parts
Three and Four) but the ANCOVA model provides narrower confi-
dence intervals. This results from how β2 is computed in the

ANCOVA formulation – beyond the scope
of our discussion – but suffice to say, when
ANCOVA is appropriate (i.e. randomisation
was robust) it provides more power and
results in smaller confidence intervals

ANOVA of Change

To complete our discussion of different approaches to modelling,
we consider how to use a simple ANOVA on a derived dependent
variable, the change in BPRS score between pre- and post-treatment.
If we are only interested in the change in BPRS, then instead of
having to incorporate two variables (pre- and post-treatment) why
not simply derive one single variable representing the change over
the course of treatment. Further, if we think about the covariate
Xij from the ANCOVA formulation – we included this to model
how the individual patient’s pre-treatment BPRS influences their
post-treatment BPRS score. Defining change in symptoms is slightly
more complex and subtle; see (Leucht et al., 2009) for details. How-
ever, the principles of analysis remain similar. To model the change
in BPRS score we proceed by calculating, for each patient i, the dif-
ference in post-treatment (Ti1 = 1) and pre-treatment (Ti0 = 0)
BPRS:

∆Yi = (BPRS at Ti1)− (BPRS at Ti0)

Which in terms of the columns and terms in Table 1 is:

∆Yi = Yij − Xij

To make this concrete, take patient 261 (the first row) from Table
1. They were assigned to chlorpromazine (Dij = 0), and had a pre-
treatment BPRS Xij = 50 and a post-treatment BPRS Yij = 44. Then,
the new derived change in BPRS value for this patient is:

∆Y261 = 44− 50 = −6
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So, patient 261 improves by 6 points – their post-treatment
BPRS is 6 points lower than their pre-treatment BPRS. Compared
to the data from our previous examples, our data will now appear
as shown in Table 3. To analyse this data yourself, load the file
Kane-simulated-ANOVA-change.csv.

i (Patient) ∆Yi (Change in BPRS post-
from pre-treatment)

Dij (Drug)

229 -8 0

68 -19 1

235 -6 0

9 -16 1

80 -16 1

45 -19 1

227 -5 0

238 -6 0

70 -17 1

1 -18 1

Table 3: Sample of data table arranged for
ANOVA of change in BPRS

The model we will fit to this data is now very simple:

∆Yi = β0 + β1Dij + εi (4)

The output from our statistics package gives us Table 4 and the
interpretation proceeds as for our previous examples. We want to
see if there is an effect of Drug on outcome, which in the ANOVA
of change model, is to simply to inspect the estimated coefficient
β1 = −10.90 with a 95% confidence interval of [−11.31,−10.49].
Note the similarity to that obtained from the ANCOVA in Table 2

for the Drug term, Dij, and it’s coefficient β1) as well as (from Part
Three) the repeated measures ANOVA where the same effect was
given by the interaction term Drug:Time, DijTit, with it’s coefficient
β3. The hypothesis testing for the ANOVA of change proceeds in
the same way as for the other models, so we will not repeat the
statements here.

Output Term Coefficient Estimated Beta 95% Conf. Int.
(Intercept) – β0 −5.03∗∗∗ [−5.31;−4.75]
Drug Dij β1 −10.90∗∗∗ [−11.31;−10.49]
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05

Table 4: Estimated ANOVA of change
model

Conclusion

We have discussed the basics of regression and linear models, first
in the continuous-variable case, and then using categorical variables
of the kinds you will encounter when comparing treatments. We
examined the mechanics of how the components of a linear model
behave to describe mean effects of treatments. The take-home mes-
sage is that – you can use a variety of methods (repeated-measures
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ANOVA, ANCOVA and ANOVA of change), and all can be formu-
lated and understood as regression problems (linear models) to be
fit with standard statistics software.

You should ensure you are comfortable interpreting the output
of a statistics package with reference to the linear model you design
to describe the effect of a treatment. This means understanding the
hypothesis and its relationship to the estimated coefficients β as
well as how to read p values and confidence intervals.

We have not discussed model fitting diagnostics – i.e. deciding if
your linear model is really a good description of the data – because
our emphasis was on understanding the basic mechanics of linear
models applied to clinical trials of treatments.

The most general and flexible model (repeated measures ANOVA)
and the ANCOVA and ANOVA of change models were derived
from assumptions about baseline differences and how they affect
the post-treatment effects. Notably, ANCOVA assumes proper
randomisation with no mean difference in BPRS scores before treat-
ment. Kane et al. made this assumption, and using our simulated
data, this seems appropriate.

We finish our discussion by repeating advice from (Van Breuke-
len, 2006) on which of the previous methods to use in different
circumstances:

1. if both treatment groups were truly randomised – i.e. patients
were equally unwell in each treatment group – then the AN-
COVA formulation (equation 1, above) is the most powerful

2. ANCOVA is superior to ANOVA of change for randomised
studies

3. if participants drop out (i.e. there is some missing data post-
treatment), then the repeated measures ANOVA handles this
more robustly

Finally, if you are comfortable with the methods covered here,
then you could explore hierarchical linear models, which capture
difference and change between groups in a more complete way
at the expense of the models being somewhat more complex to
interpret. A thorough textbook on this topic is Gelman and Hill
(2007).

Questions and Exercises

We’ll implement the ANCOVA model in SPSS using the Mixed
Models feature, only this time, we will try to implement equation 1

with similar assumptions – e.g. we have coded the variables so that
0 and 1 are the only allowed numerical values for the categorical
Drug and Time. To proceed, you can load Simulated-kane-ANCOVA.sav

which is identical to Kane-simulated-ANCOVA.csv only with the
variables (columns) already configured correctly for analysis in
SPSS. Note the correspondence of terms in equation 1 with the table
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of data in SPSS: the variable named BPRS.T0 is equivalent to Xij in
equation 1. Then execute following steps:

1. Select Analyze, Mixed Models then Linear

2. In the dialog box (’Linear Mixed Models: Specify Subjects and
Repeated’), add variable ’Patient’ to the Subjects list and click
’Continue’ Note, we do not have a Time variable

anymore - see discussion earlier in Analysis
using ANCOVA3. In the next dialog box (’Linear Mixed Models’), add ’BPRS.T1’

– the BPRS score post-treatment – as the Dependent Variable, and
add both ’BPRS.T0’ (pre-treatment, or baseline, BPRS score) and
’Drug’ to the Covariate(s) list.

4. Click on the Fixed button, and then in the dialog, add ’Drug’
and ’BPRS.T0’ to the Model list on the right – ensure that the
interaction ’Drug*BPRS.T0’ is not added by SPSS automatically; if
it is, highlight and then hit ’Remove’. Click continue to return to
the main dialog box.

5. Now, click Statistics and tick the Parameter estimates boxes – click
continue.

6. Finally, back in ’Linear Mixed Models’ dialog, hit OK and the
model will be estimated

As before, we will neglect the diagnostic information. Scroll down
to the ’Estimates of Fixed Effects’ table, and compare with Table 2.

Next, we’ll try implementing the ANOVA of Change model in
SPSS : To proceed, you can load Simulated-kane-ANOVA-change.sav

which is identical to Kane-simulated-ANOVA-change.csv only with
the variables (columns) already configured correctly for analysis
in SPSS. As before, inspecting the data in SPSS, you should see the
data corresponds to the sample shown in Table 3 and the model we
want to implement is equation 4. Then execute the following steps:

1. Select Analyze, Mixed Models then Linear

2. In the dialog box (’Linear Mixed Models: Specify Subjects and
Repeated’), add variable ’Patient’ to the Subjects list and click
’Continue’ Note, we do not have a Time or baseline

BPRS (e.g. BPRS.T0) variable anymore
- see discussion earlier in ANOVA of
Change; we have taken care of the effect
of Time on BPRS by deriving a single
dependent variable – the change in BPRS
from pre- to post-treatment – as ∆Yi =
Yij − Xij – which is labelled Delta.BPRS in
the data table

3. In the next dialog box (’Linear Mixed Models’), add ’Delta.BPRS’
as the Dependent Variable, and add both ’Drug’ to the Covariate(s)
list.

4. Click on the Fixed button, and then in the dialog, add ’Drug’ to
the Model list on the right. Click continue to return to the main
dialog box.

5. Now, click Statistics and tick the Parameter estimates boxes – click
continue.

6. Finally, back in ’Linear Mixed Models’ dialog, hit OK and the
model will be estimated
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Scroll down to the ’Estimates of Fixed Effects’ table, and compare
with Table 4. Notice we are most interested in the effect of Drug
(the intercept is less relevant and represents a ’grand mean’ which
is of little interest).
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