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1 Summary

It makes intuitive sense to bolster prediction of disease (or disease state) by
aggregating data from a number of different biomarkers (modalities). There
are two obvious approaches (Damoulas and Girolami, 2009) shown in Figure 1,
when, for a given population, participants have more than one biomarker:

1. A “brute force” approach, where all data is concatenated into one, large
joint, feature-space and a single classifier is trained over this joint space

2. For each modality, train and test individual “expert” classifiers and com-
bine their outputs to provide a final “ensemble” classification

The first “brute force” (BF) approach is straightforward to implement, but
requires that all participants in the population possess all biomarkers with no
missing data/samples so a robust classifier can be estimated. Performance of
the BF classifier can only be evaluated on the subset of participants possessing
all modality data – it cannot generally perform plausible “filling in” of missing
modality data and make best-effort predictions. The latter approach provides
for more flexibility, particularly in deploying the resulting classifier, when only
a subset of biomarkers are available for given participant. The results presented
below show that:

1. Overall, combining evidence from multiple modalities improves on the
performance of individual modalities

2. Brute-force approaches – while perhaps lacking flexibility – provide per-
formance gains over individual classifiers

3. Ensemble classifications provide a comparable level of performance to the
Brute-force approach, but provide a more principled and flexible approach
to the problem

4. In ensemble methods, using probabilistic methods for combining evidence
appear superior to discrete voting methods

2 Data

The following data sets were extracted from the Sage databases for AddNeuroMed:
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Combination

GX1 GX2 GX.all MRI PX

Classification Classification

Figure 1: Evidence Combination (left); Brute-Force Combination (right); Cir-
cles indicate individual classifiers – one “expert” for each modaliity (left) and a
single classifier for the combined multimodal data (right)

• Proteomics data (herein referred to as PX) with n = 671 participants and
p = 1016 features (Sattlecker et al., 2014)

• MRI data (MRI) totalling n = 163 subjects with p = 2150 features from
a pre-processed FreeSurfer data processing pipeline (Mangialasche et al.,
2013)

• Gene expression data from (Voyle et al., 2016), where there are two
‘batches’ of data from two different chip arrays. Batch 1 (GX1) had n = 314
participants with p = 6462 features (?SNPs) and Batch 2 (GX2) contained
n = 250 participants with p = 6248 features.

• From the two gene expression datasets (Batch 1 and Batch 2), SNPs com-
mon to both batches (resulting in p = 5212 common features/SNPs) were
combined resulting in an aggregate (GX.all) set containing n = 564 partic-
ipants. As the distributions of each feature was different between Batches
1 and 2, each was mean centred and scaled before the common features
were aggregated.

• Of all participants, n = 127 had “complete” biomarker data for GX.all,
MRI and PX which formed the Combination data set used for the brute-
force approach to combining evidence.

There were some discrepancies between datasets which meant that not all
participants’ unique identifiers in the biomarker data could be reliably matched
to clinical record data1 and additionally, there appeared to be some duplicated
samples e.g. in the proteomics data set where 6 participants with replicated
samples. This resulted in modest participant loss and enabled classifiers to be
built with the following sample sizes (see Figure 2):

• Proteomics (PX) n = 658

• MRI (MRI) n = 163

1In February 2017, the datasets were updated to include more robust cross-referencing
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Figure 2: Sample and feature sizes for the included data sets

• Gene expression Batch 1 (GX1) n = 314

• Gene expression Batch 2 (GX1) n = 250

• Common gene expression (GX.all) n = 549

• Combination of all modalities (Combination) n = 121

3 Classifiers

Individual classifiers were built for each modality MRI, GX1, GX2, GX.all and PX

– circles in the left panel of Figure 1. For each modality, samples are arranged
as an n × p matrix X, with rows Xi being a vector of individual participant’s
data and a corresponding target classification Yi ∈ G = {ADC,MCI,CTL}
representing their assignment to either Alzheimers, mild-cognitive impairment,
or controls respectively. For each modality, the aim is to model the posterior
probability Pr(Yi = G|Xi) that participant i has Alzheimers, mild-cognitive
impairment or is a control participant and this is tackled as a discriminative
modelling problem (Ng and Jordan, 2002). The simplest classification decision
rule is the Bayes-optimal rule of assigning participant Xi to the class G with
the largest posterior probability (Bishop, 2007).

Given that the number of features/predictors greatly exceeds the number of
participants (p� n) in each modality, regularised multinomial generalised linear
models (so-called elastic-net GLMs) were used (Friedman et al., 2010) to find an
optimal and sparse set of predictors for the final classifier. The elastic-net im-
plements a continuum between the lasso- and ridge-regression penalty solutions.
The former tends to retain the largest, non-zero coefficients for predictors (dis-
carding the remaining features) and the latter shrinks estimated coefficients of
correlated (redundant) predictor variables toward each other. The lasso penalty
generally results in smaller, sparser sets of features in the final model (Fried-
man et al., 2010). For the classifiers implemented here, the lasso penalty was
used. There is no in-principle reason why other classifier algorithms cannot be
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used – e.g. Gaussian process classifiers (GPC), support vector machines (SVM)
or orthogonal partial least squares to latent structures (OPLS). A robust, but
computationally expensive training method was used to minimise classifier bias
(underfitting) and prevent high variance (overfitting) – see (Breiman et al.,
1996), (Friedman et al., 2001) and (Bengio and Grandvalet, 2004). Therefore,
a relatively fast, maximum likelihood-based method was used (versus for exam-
ple, the more computationally costly Bayesian estimation of GPCs). A further
requirement for evidence combination (Figure 1, left panel) is that the classifier
can naturally yield estimates of the probabilities Pr(Yi = G|Xi) – which is more
difficult when using e.g. SVMs and OPLS because of their “one versus all”
approach to multi-class problems.

4 Classifier Training

To train a classifier for a modality requires a regularisation parameter, λ, which
sets a threshold for excluding predictors that are not contributing to classifi-
cation. This model-selection process finds the optimal value of λ – where each
value yields a particular solution and classifier given the data – and the bias
of the classifier is minimised. While cross-validation can be used to select the
optimal λ, this requires further embedding in a model assessment stage that
guards against fortuitous choices for the fold partitioning (e.g. high variance
solutions). Classifier training, model selection (for parameter λ) and model
assessment (for out-of-sample classification performance) was performed using
repeated, nested, stratified k-folds cross-validation. This differs from the tradi-
tional 10-fold stratified method (Kohavi, 1995) often used for model selection,
and instead implements the algorithm given in the Appendix, (adapted from
Algorithm 2 in (Krstajic et al., 2014) for the GLMnet classifier).

For the results presented here, the number of inner and outer loops was
N1 = N2 = 50 (essentially, the number of times cross-validation for model
selection and assessment are repeated) and the number of inner and outer folds
was V1 = V2 = 10. The advantage of this method is that:

• Estimates of classifier performance – i.e. an estimate of Pr(Yi = G|Xi)
for every participant in the data set – is an average of N2 repetitions of
V2-fold cross-validation (the outer loop)

• The optimal regularisation parameter λ is estimated by averaging over N1

repeated inner loops of V1-cross-validations

• Optimistic estimates of Pr(Yi = G|Xi) due to “lucky” partitioning of the
data into V2 folds is avoided by repeating the outer loop N2 times

• For each participant i, the classifier used to estimate the probability
Pr(Yi = G|Xi) was trained only on a subset of participants2 which did
not include i

2In all the following results, performance is reported only using out-of-sample estimates
for posterior probabilities so classification results are never over-optimistic. Note, unlike some
published results, the model parameters obtained from cross-validation model selection are
not then used to re-train a model with all available data which artificially boosts reported
classifier accuracy
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Mild Cognitive ImpairmentD

Figure 3: For individual modalities, the complete data sets were used (PX,
n = 658; MRI, n = 163; GX1, n = 314; GX1, n = 250; GX.all, n = 549);
For the “brute force” classifier, Combination, n = 121. A: Overall Accuracy
(correct versus incorrect) for each dataset / modality; ROC space of modality-
classifiers for each diagnostic class B: Classifying Controls correctly (versus both
other groups); C: Alzheimer’s (versus others) and D: Mild Cognitive Impair-
ment (versus others). Error-bars in A represent 95% confidence intervals for a
Binomial test of accuracy significantly different from the ’no information rate’
(NIR), which is taken to be the class with the highest prevalence; i.e. if different
diagnoses are represented equally in the data set, then the NIR = 1/3

5 Individual Modality and Brute-Force Classi-
fier Performance

To test individual classifier’s performance, for a given participant their predicted
class from a modality was simply “hard assigned” on the basis of the highest
posterior probability (i.e. the simple Bayes-optimal decision rule). For example,
if a classifier reports for a given participant the posterior probabilities:

Pr(Yi = ADC|Xi) = 0.35

Pr(Yi = MCI|Xi) = 0.36

Pr(Yi = CTL|Xi) = 0.29
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Then the participant is predicted to be in the MCI (mild cognitive impairment)
class. In terms of assessing prediction error, a 0-1 loss function is assumed such
that if the above participant actually has a diagnosis of MCI then the classifier
scores one for this example (conversely, if the predicted class was ADC or CTL,
then the score is zero). This affords an intuitive overall “correct versus incorrect”
accuracy score, but is less informative than the true- and false positive rates for
a given diagnosis (i.e. the classifier’s performance in ROC space).

Figure 3 shows the performance of 5 classifiers (trained as described above)
for each data set PX, MRI, GX1, GX2 and GX.all – i.e. the performance for the
individual classifiers in Figure 1 (left). In addition, the ’brute force’ combina-
tion classifier was implemented (shown in red, corresponding to Figure 1, right
panel), trained on the n = 121 participants with complete data for PX, MRI, and
GX.all as described in Figure 2.

Overall, the ‘brute-force’ (BF) combination classifier performs favourably
over individual modalities alone in predicting classification; however, classifier
performance can only be evaluated on the small (n = 121) subset of participants
who possess data on all modalities; this issue is taken up later.

6 Challenges for Evidence Combination

Using the BF method (Figure 1, right), classification is performed on a con-
catenated feature space of 8378 features. There are two significant difficulties
presented by this approach:

1. If, for example, a sub-group of participants do not have e.g. proteomics
data, then for these participants, around 12% of their data are systemat-
ically missing. Similarly, in another sub-group with gene expression and
proteomics, but no MRI data, then for these participants, around 25% of
their data is systematically missing.

2. The BF method requires one concatenated feature-space to be formed
and, if each modality has different distributions, the classifier is forced to
cope with heterogeneity in distributions of this combined feature space –
an extreme example being augmenting two modality’s feature spaces, one
with binary features and the other with continuous, normally distributed
features.

In a situation where a participant has, for example, only a proteomics
biomarker, obtaining a classification using the brute-force approach is impossi-
ble; the single classifier has been trained on a concatenated feature space. A
plausible model of missing data is difficult to implement, unless a generative
model of the joint distribution of (X, Y ) is available during classifier construc-
tion (generally, this is intractable).

The more statistically concerning problem with brute-force classification is
illustrated in Figure 4, where two simulated, unidimensional modalities (p = 1)
are shown for n = 1000. In each modality X1 and X2, the true classification
is given by a threshold3. Classification within each modality is trivial – if a
participant has X1 < 7 they are assigned Class 0, otherwise Class 1. Similarly,

3This toy example is used to illustrate the problem; it would be rare for a discrete, decision
threshold to exist which unambiguosly defines class membership
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Figure 4: Hypothetical Classification Problem – A: Individual modality X1 with
a unidimensional “feature-space”, and a trivial classification into Classes 0 and 1;
B: Similarly, for modality X2; Classification in the native feature space (modal-
ity) is straightforward and unequivocal. C: Using the brute-force approach, a
joint feature-space is formed by concatenating X1 and X2; in this concatenated
feature-space, a number of participants are now in an equivocal class where the
assignments in X1 and X2 disagree; D: GLM attempting to classify using the
original two classes in the concatenated feature space; E: classification using
a more flexible multinomial GLM allowing for an additional class when there
is equivocation (disagreement) resulting from concatenating the two modality’s
native feature spaces.

in the second modality, if a participant has X2 < 0.5, they are assigned Class 0,
otherwise Class 1.

The first difficulty is illustrated in Figure 4, panel C: the concatenated, joint
feature space (X1, X2) results in a situation where some samples in X1 have
different classifications in X2, so the overall classification is equivocal. Using
this concatenated feature space, with a generalised linear model (GLM) over
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the two classes results in Figure 4, panel D with poor classification. Using
a more flexible multinomial GLM gives the result shown in Figure 4, panel
E. While this is more robust, the brute-force approach requires accounting for
disagreement in the concatenated 2D feature space. While there are solutions
to these problems, they will be specific to individual datasets; for example, one
could exploit covariance structure in the concatenated feature space and use
kernel-based methods see e.g. (Damoulas and Girolami, 2009).

An alternative, flexible proposal is to use evidence combination over the
posterior probabilities returned by each individual modality (Figure 1, left).
This allows for “best attempt” classification when participants only have one
or two biomarkers (instead of the full complement required by the ‘brute-force’
method) and allows for classifiers to be “modality experts”, learning properties
of the conditional distribution for their respective modalities.

7 Approaches to Combining Evidence from In-
dividual Modality Classifiers

For a review of ensemble-based classification systems, see (Polikar, 2006) and
(Kittler, 1998) for a more detailed probabilistic framework and theoretical as-
sumptions required for the probabilistic rules adopted below. To make termi-
nology consistent, the aggregation of outputs from individual, modality-specific
classifiers is termed ensemble classification. The following notation is used:

• there are classifiers for each modality M = {PX, MRI, GX1, GX2, GX.all}

• as before, there are three classes G = {ADC,CTL,MCI}

• the posterior probability of participant Xi being in a class G, reported by
a particular modality classifier is Pr(G|Xi;mj) where j ∈M

• the discrete classification – or ‘vote’ – from individual modality classifier
j is the class G with the largest posterior probability:

vj = argmax
G

Pr(G|Xi;mj)

As an example, assume the modality classifiers (circles in Figure 1, left)
report posterior probabilities as shown in Table 1. Methods for ensemble clas-
sification over the posteriors are:

• discrete voting methods – the final classification is given by taking the
class G with maximum number of votes vj

• heuristic methods – where probabilities reported by each modality are
combined by e.g.averaging where the mean or median of the columns in
Table 1 are computed, and the class G with the largest support is chosen

• probabilistic methods – where under defined independence assumptions
for modality classifiers, the product or sum of the posterior probabilities
are computed

• meta-learning – where classifier combinations are learned using “stack-
ing” or “boosting” methods (see Future Work discussion below).
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mj Pr(ADC|Xi) Pr(CTL|Xi) Pr(MCI|Xi) vj
MRI 0.08 0.19 0.73 MCI
PX 0.99 0.01 0.00 ADC
GX1 0.01 0.00 0.99 MCI
GX2 0.41 0.30 0.28 ADC

GXall 0.02 0.72 0.26 CTL

Ensemble Combination Classification
Votes MCI or ADC
Mean 0.30 0.24 0.45 MCI

Median 0.08 0.20 0.28 MCI
Product 0.8× 10−5 0.0 0.0 ADC

Sum 0.20 0.21 0.58 MCI

Table 1: Example posterior probabilities returned by individual modality classi-
fiers in the ensemble shown in Figure 1 (left) with different combination strate-
gies shown below

Note that in all cases, results presented for individual, ensemble and BF
classification performance are obtained only using out-of-sample estimates from
the model-selection/assessment procedure.

7.1 Evidence Combination Compared to Brute-Force Meth-
ods

Using only participants with all modalities (n = 121), the BF method can be
compared with the evidence-combination methods described above. Figure 5
shows that discrete, voting methods do not perform favourably but there are
modest gains obtained using the mean, product and sum rules. The ROC space
reveals that ensemble methods generally produce favourable results when com-
pared with the BF method (illustrated by bootstrapped mean false- and true-
positive rates being shifted up and toward the left corner of ROC space). While
these performance gains are modest, the flexibility afforded can be exploited
when – as described below – attempts are made with less-than full modality
data on the complete available data.

7.2 Ensemble Classification: Effect of Increasing Avail-
able Modalities

In comparing ensemble methods with the BF method so far, only the restricted
data set of n = 121 participants with all biomarkers has been used. Here,
flexibility is demonstrated when the ensemble approach is applied to subsets
of participants with incremental numbers of modalities. In situations where
a participant lacks a specific modality, the responsible classifier reports the
population, modality-specific prior probability Pr(G;mj). Essentially, classi-
fiers report there estimate of Pr(G|Xi;mj) and when data is not available, the
classifier j reports only it’s prior. The pool of all available data is N = 874
participants with between 1 and 4 modalities available, corresponding to MRI,
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Mild Cognitive ImpairmentD

Figure 5: A: Overall Accuracy (correct versus incorrect) for n = 121 partici-
pants with data in all modalities; ROC space of the different evidence combi-
nation classifiers for each diagnostic class B: Classifying Controls (versus both
other groups); C: Alzheimer’s (versus others) and D: Mild Cognitive Impairment
(versus others). Error-bars represent bootstrapped 95% confidence intervals on
performance statistics

PX, GX1 or GX2 and GXall. Participants have data in either GX1 or GX2 and data
in the combined gene expression data set GXall, hence the largest number of
modalities a participant can have is four.

Algorithm 1 describes how the experiments were run. In summary, sub-
populations of participants are selected who have one modality (irrespective of
which modality) and bootstrapping is used on the subset to obtain ROC statis-
tics for classification performance. This is repeated with the sub-population
having two, then three and finally, four modalities. These results describe how
adding modalities change classification performance.

Figures 6, 7 and 8 show ensemble classification performance as a function of
the number of available modalities for the heuristic mean, probabilistic product
and sum rules respectively4.

For all ensemble rules, having more modalities increases performance, with
little gain moving from 3 to 4 modalities. In terms of the optimal combination

4The top three methods from the previous experiments were used – see Figure 5
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Algorithm 1: Computing Performance of Ensemble Classifications as a
Function of the Number of Modalities

Let m = {1, 2, 3, 4} be the number of modalities
Let Sm be the subset of N = 874 participants possessing a total of m
modalities

for 2000 times do

Let S
′

m be a bootstrap (with replacement) resample of Sm

forall participants Xi in S
′

m do
Obtain posterior probabilities Pr(G|Xi;mj) by submitting
participant data to individual modality classifiers

Combine posterior probabilities and classify Xi

end
Compute ROC performance statistics (TPR, FPR, Accuracy) for this
bootstrap

end
Result: Bootstrapped ROC performance estimates and 95% confidence

intervals for participants having at exactly m modalities

rule, the mean rule outperforms the probabilistic product rule for true- and
false positive rates but MCI and Alzheimer’s disease classification is marginally
better with the probabilistic sum rule (i.e. lower false positive rates with com-
parable true-positives). There is little to recommend one rule over the others,
with perhaps the exception that the sum rule appears to control false positive
rates over all three diagnostic classes more consistently than the product or
mean rules. Theoretically, the product and sum rules are more justified in their
development and assumptions with the mean rule being heuristic.

7.3 Which Combinations Perform Best?

In the preceding section, the effect of adding modalities was compared with
different ensemble rules, but no weight was given to which modalities where
driving classification performance. Here, the sub-populations were selected by
sequentially testing each combination of one, two or three modalities. For exam-
ple, participants with MRI and PX can be compared against the sub-population
of participants with only MRI and only PX alone. Similarly, combinations such
as PX and GX versus those with only MRI. Naturally, because of the design of the
study, some combinations and single modalities have very small sample sizes
– for example, 7 participants had only MRI and PX. To reduce the number of
combinations to test, for the GX samples, participants were selected from the
combined GXall modality rather than individual batches GX1 and GX2.

Figure 9 shows how different modalities in isolation or combined change
classification performance using the sum rule (chosen for its theoretical and
empirical properties, described above). The best performance is obtained when
combining MRI, PX and GX and this is pronounced when examining the ROC
statistics for each diagnostic class. The sub-population combining PX and GX

performs favourably but marginally sacrifices performance on false positive rates
for Alzheimer’s and Mild Cognitive Impairment. Conversely, these results can
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Mild Cognitive ImpairmentD

Figure 6: Ensemble Classification using the Mean Rule – A: Overall Accuracy
(correct versus incorrect) for all participants; ROC space of the different evi-
dence combination classifiers for each diagnostic class B: Classifying Controls
(versus both other groups); C: Alzheimer’s (versus others) and D: Mild Cognitive
Impairment (versus others). Error-bars represent bootstrapped 95% confidence
intervals

be interpreted as suggesting combining proteomics with gene expression data
gives a baseline ensemble performance that improves slightly – for diagnosing
Alzheimer’s and Mild Cognitive Impairment – when neuroimaging data is added.

8 Future Work

1. Outstanding Inferential Statistics for Performance: given that per-
formance over individual classes (e.g. ROC statistics presented in Figures
5 – 9) is relevant in this data, a workable inferential method for determin-
ing superiority is required (e.g. beyond simple tests on global accuracy).

2. Learning Combinations: The above results illustrate evidence combi-
nation by ensembles using fixed functions. The next step is to try so-called
meta-learning methods that attempt to learn the best ensemble – for ex-
ample, variants on “stacking” (Wolpert, 1992; Breiman, 1996; Sill et al.,
2009) and Bayesian model combination (Monteith et al., 2011).

3. Individual Classifiers: The GLMnet algorithm is not necessarily the
optimal classifier algorithm for each modality – for example, gene expres-
sion data may be better classified using shrunken centroid-based methods
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Mild Cognitive ImpairmentD

Figure 7: Ensemble Classification using the Product Rule – A: Overall Accu-
racy (correct versus incorrect) for all participants; ROC space of the different
evidence combination classifiers for each diagnostic class B: Classifying Con-
trols (versus both other groups); C: Alzheimer’s (versus others) and D: Mild
Cognitive Impairment (versus others). Error-bars represent bootstrapped 95%
confidence intervals

(Tibshirani et al., 2002), although initial results were not impressive on
this dataset. Of note, having many classifiers each using different algo-
rithms on the same modality is easily provided for in the ensemble methods
framework.

4. Representational issues: features are currently entered “raw” into clas-
sifiers and there is evident redundancy as the GLMnets find a sparse fea-
ture set to classify. If there is a parsimonious topology underlying the
features - this could be found by unsupervised methods first e.g. locally-
linear embedding (Roweis and Saul, 2000), isomaps (Tenenbaum et al.,
2000) or simply distance-preserving multidimensional scaling. The former
remain controversial (Balasubramanian and Schwartz, 2002) and require
adaptations for use in classification where training/testing relies on out-
of-sample validation (Bengio et al., 2003). Reduced-dimensional repre-
sentations could be properly explored for their potential to enhance both
modality-level classifier performance, and improve combination - whether
by brute force, or by evidence combination. Further so-called multi-kernel
methods may offer a unified approach to brute-force methods (Damoulas
and Girolami, 2009).
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Figure 8: Ensemble Classification using the Sum Rule – A: Overall Accuracy
(correct versus incorrect) for all participants; ROC space of the different evi-
dence combination classifiers for each diagnostic class B: Classifying Controls
(versus both other groups); C: Alzheimer’s (versus others) and D: Mild Cognitive
Impairment (versus others). Error-bars represent bootstrapped 95% confidence
intervals

5. A reasonable question is “Why not DeepLearning?”: given the sugges-
tion of exploiting data dimensionality-reduction (representation), as well
as the simplicity of evidence combination using brute-force methods, hi-
erarchical supervised learning of increasingly sparse representation at the
same time as classification has appeal; for example, as in convolutional net-
works (Krizhevsky et al., 2012). There are difficulties understanding what
these networks learn and the interpretation of the outputs – while proba-
bilistic – are not obviously understood in the same way as e.g. GLM-based
models that preserve the interpretation of each classifier as a discrimina-
tive model with outputs readily interpreted as posterior probabilities of
class membership (under the rubric of statistical decision theory). This
remains an active area of theoretical and empirical work, but for diag-
nostic decision making, it may be prudent to retain the more traditional
interpretation afforded by well-understood methods.
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Figure 9: Comparitive Ensemble Classification Performance by Modality (using
Sum Rule) – A: Overall Accuracy (correct versus incorrect); ROC space of the
different evidence modalities classifiers for each diagnostic class B: Classifying
Controls (versus both other groups); C: Alzheimer’s (versus others) and D: Mild
Cognitive Impairment (versus others). Error-bars represent bootstrapped 95%
confidence intervals; For MRI+PX and MRI alone, n was too small to estimate
robust confidence intervals
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A Repeated, Nested Cross-Validation

Algorithm 2: Repeated, nested cross-validation

for N2 times do
Stratify the entire data set D = (X, Y ) into V2 pseudo-random folds
with balanced proportions of classes G in each fold

forall folds i in V2 do
Let this training set, τ2, be D excluding fold i
Let this validation set, ν2, be fold i

Model Selection:
for N1 times do

Divide τ2 into V1 folds
forall folds j in V1 do

Let this inner training set, τ1 be τ2 excluding fold j
Let this inner validation set ν1 be fold j
Search for optimal λj by training a classifier F on τ1 that
maximises classification performance on ν1

end
Store each λj value for each V1 fold

end

Compute final λ̂ as the average of the N1 values of λj

Model Assessment:

Build a final classifier Fi with λ̂ on training set τ2
Use Fi to predict Pr(Y = G|X) for participants in validation set
ν2

end

end
Result: N2 estimates of Pr(Y = G|X), obtained out-of-sample, for each

participant in D

Final Model:
Compute and store average of N2 out-of-sample estimates of the
probability Pr(Y = G|X) for each participant
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Sill, J., Takács, G., Mackey, L., and Lin, D. (2009). Feature-weighted linear
stacking. arXiv preprint arXiv:0911.0460.

Tenenbaum, J. B., De Silva, V., and Langford, J. C. (2000). A global geometric
framework for nonlinear dimensionality reduction. science, 290(5500):2319–
2323.

Tibshirani, R., Hastie, T., Narasimhan, B., and Chu, G. (2002). Diagnosis of
multiple cancer types by shrunken centroids of gene expression. Proceedings
of the National Academy of Sciences, 99(10):6567–6572.

Voyle, N., Keohane, A., Newhouse, S., Lunnon, K., Johnston, C., Soininen, H.,
Kloszewska, I., Mecocci, P., Tsolaki, M., Vellas, B., et al. (2016). A path-
way based classification method for analyzing gene expression for alzheimers
disease diagnosis. Journal of Alzheimer’s Disease, 49(3):659–669.

Wolpert, D. H. (1992). Stacked generalization. Neural networks, 5(2):241–259.

18


